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The neutron small-angle scattering of hen egg-white lysozyme chloride in solution has been determined. 
The scattering density of the solvent and accordingly its contrast with the dissolved particles has been 
varied by changing the H20/D20 ratio of the solvent. The zero-angle scattering was derived and it was 
shown that the square root of the zero-angle intensity is proportional to the contrast. The experimental 
value of the radius of gyration is R= 13.8 A, in good agreement with the same quantity calculated on 
the basis of the crystal structure model of tetragonal lysozyme. The three basic scattering functions were 
derived from the experimental data and compared with the corresponding scattering pattern calculated 
from the coordinates of the X-ray structure. The results do not suggest a deviation of the conformation 
and structure of lysozyme in solution from the crystal structure. The spherical average of the overall 
dimensions has been separated from the internal structure. The influence of higher multipoles of the 
shape of the lysozyme molecule on the scattering curve is discussed. 

Introduction 

Lysozymes (mucopeptide N-acetylmuranylhydrolases) 
form a class of rather widely distributed enzymes oc- 
curring in many tissues and secretions of vertebrates, 
bacteria, phages and plants (e.g. Joll6s & Joll6s, 1969). 

In the following the term lysozyme is used for the 
specific form hen egg-white lysozyme. The structure of 
this lysozyme has been determined by Blake, Koenig, 
Mair, North, Phillips & Sarma (1965) who worked on 
the tetragonal crystal modification of lysozyme chlor- 
ide. The structure of a triclinic modification has been 
reported (Joynson, North, Sarma, Dickerson & Stein- 
rauf, 1970). The conformation of the molecule is the 
same in the two modifications. Recently a phase transi- 
tion has been described (Joll6s & Berthou, 1972) for 
tetragonal lysozyme which becomes orthorhombic at 
temperatures higher than 25°C. This orthorhombic 
form is called lysozyme B; crystal structure analysis is 
in progress. It is not yet clear whether the crystal 
structure transition is accompanied by a transition in 
the conformation. The question whether the conforma- 
tion in the crystalline form is identical to lysozyme in 
solution was, however, not completely solved. Some 
evidence for the conservation of the molecular struc- 
ture was given by a comparison of earlier X-ray small- 
angle scattering experiments (Luzzati, Witz & Nico- 
laieff, 1961) with the structural model. The results of 
more recent work of Krigbaum & Ktigler (1970) are 
compatible with the structural model. 

The introduction of the contrast variation technique 
(Stuhrmann & Kirste, 1965) allows more information 
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to be extracted from small-angle scattering studies in 
solution. The analysis of the three basic scattering 
functions provides specific information on the scat- 
tering due to the shape of the molecule and to its 
internal structure (Stuhrmann, 1974). 

Contrast variation is easily achieved in neutron 
scattering experiments. A wide range of scattering- 
length densities can be covered with HaO/D20 mix- 
tures because the scattering length of H ( - 0 . 3 7 4 ×  
10 -12 cm) and of D (+0"667 x 10 -12 cm) are very dif- 
ferent. As the scattering lengths of the other relevant 
nuclei in protein molecules do not differ much from 
that of D (except N with b=0.94  × 10 -12 cm) the inter- 
nal structure density function Qs(r) is mainly deter- 
mined by the H density of the protein molecule. 

The present paper describes an analysis of the basic 
scattering functions of dissolved lysozyme in terms of a 
multipole expansion. The limits of an unambiguous 
interpretation are presented and the results are com- 
pared with the structural model of tetragonal lysozyme 
chloride. 

H. Experimental 

The lysozyme was supplied by Koch-Light and labelled 
lysozyme chloride ex egg white, cryst. (batch N ° 55982). 
Ten different DzO/H20 mixtures ranging from pure 
D20 to pure HzO were used as solvent. The aqueous 
solution had a pH of 3.65 and pD for the solution in 
D20 was 3.82 (both for 40 mg/ml). Series of decreasing 
concentration were prepared in pure DzO and pure 
H20. The weight concentration of lysozyme in the 
mixtures of HzO/D20 was uniformly 80 mg/ml. All 
scattering curves were extrapolated to infinite dilution 
of lysozyme in order to eliminate interparticle inter- 
ference in the small-angle scattering. 
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The neutron scattering experiments were done at the 
small-angle scattering device D 11 at the Institut Laue- 
Langevin. This instrument is installed at a neutron 
guide tube at the cold source of the reactor. Neutrons 
are monochromatized by a helical slit selector and 
detected by a two-dimensional position sensitive 
detector of'64 x 64 counting points arranged in a square 
of 64 cm height. A detailed description of the facility 
is given by Schmatz, Springer, Schelten & Ibel (1974) 
The mean wavelength was 3.5 A with a half-width of 
1.5 A. The scattering curves were corrected for the 
influence of the wavelength distribution. A sufficiently 
broad range of scattering angle could be covered by 
placing the detector at distances of 0.66 m and 2.36 m 
from the sample. The sample area was 2 cm 2 and the 
sample volume 0-5 ml. The neutron flux passing through 
the sample was about 5x 10 7 n sec -1 cm -2. The 
measuring time for one scattering curve was 10 min 
and about 500 to 2000 counts were recorded per re- 
gistering point. Runs on each solvent mixture were 
made to determine the background from the solvent. 
The experiments were performed at 23 °C. 

HI. The contrast variation technique 

As already stated the experiments were performed in 
the presence of variable amounts of D20. The purpose 
of adding D20 to H20 was to raise the scattering den- 
sity from negative values below 8 % D20 to values 
which are higher than the scattering density of organic 
material. It may be noted that the contrast can very 
often not be varied sufficiently in X-ray work. 

The influence of the solvent on the scattering pattern 
of the solute is explained in the following way (Stuhr- 
mann & Kirste, 1965; Hyman & Vaughan, 1967; Har- 
rison, 1969; Stuhrmann 1970a, 1974; Mateu, Tardieu, 
Luzzati, Aggerbeck & Scanu, 1972). In solutions of 
macromolecules the scattering of the solute can well be 
described by the difference of the scattering probability 
between the solute and the solvent. The influence of 
the solvent on the excess scattering density ~(r) is ap- 
proximated by an expression linear in the contrast 

Q(r) =0Qc(r) + ~s(r). (1) 

is the mean excess scattering density (~:Qprotein-- 
Qso~vent) • Qc(r) is a function which describes the region 
that is forbidden to the solvent by solute molecules. 
Without any penetration of solvent into the molecule 
(inner solvation) and without any replacement of H by 
D, Qc(r) is 1 inside the molecule boundaries and it 
vanishes outside. In proteins, however, partial pene- 
tration of the solvent to the internal parts of the par- 
ticle is known to occur as well as a dissociation of 
protons which, in HzO/D20 mixtures, will be replaced 
by deuterons. These effects are accounted for by 
values of Q~(r) between 0 and 1. Qs(r) gives a description 
of the structure of the dissolved molecule. A direct 
measurement of this quantity is obtained if the contrast 
is zero. In this case zero-angle scattering vanishes, a 

fact which allows an easy detection of this quantity and 
provides a valuable reference point in experimental 
work. The scattered intensity I(K) corresponding to the 
scattering density Q(r) from (1) consists of three basic 
scattering functions (Stuhrmann & Kirste, 1965): 

I(K) = ~2Ic(K) + Olcs(K) + Is(K). (2) 

IV. Results and discussion 

1. Zero-angle scattering 
The extrapolation of small-angle scattering to K=0  

yields zero-angle scattering. The square root of the 
zero-angle intensity of a dilute monodisperse solution 
is proportional to the contrast ~. The results of lyso- 
zyme in Fig. 1 confirm the linear dependence of 1 / / ~  
on the scattering density of the solvent. 

The mean scattering density of the solute is given by 
the intercept of the straight line in Fig. 1 with the abcis- 
sa. Zero-angle scattering of lysozyme vanishes at 45 % 
D20 content in the H20/D20 mixture. The scattering 
density of lysozyme is then equal to that of the solvent. 
The sum of the coherent scattering density of this 
particular H20 mixture is 2.55 × 101° cm/cm 3. The sum 
of the coherent scattering lengths of the lysozyme 
molecule can be calculated from the known amino 
acid sequence. By admitting an exchange of H atoms 
corresponding to 45 % D20 the total scattering length 
of 4.50x 10 -l° cm is obtained. The volume of the 
lysozyme molecule is given as the ratio of these two 
quantities V =  (4.50 x 10-1°/2.55 x 101°) cm3= 17800 A 3. 

2. The radius o f  gyration 
The radius of gyration R 2 is shown in Fig. 2 as a 

function of the contrast ~. Fig. 2 suggests a dependence 
of R 2 on 1/~ which shows only small deviations from 
linearity 

R 2 =. R 2c .k_ o~: fl ~2 • (3) 

The coefficients ct and fl are defined by 

1 l ~=  ~ Qs(r)r2d3r 

1SI 
fl= ~ Qs(r)Qs(r')r r'dardar ' (4) 

V C " " 

As already stated Qc(r) becomes predominant for high 
contrast ~ and the radius of gyration then equals Rc 
[see (3) for 1/} tending to 0]. The interpolation of the 
experimental data in Fig. 2 yields Rc=13.8 A. This 
radius Rc corresponds to the volume actually occupied 
by the molecule in solution, because details of the 
internal structure cease to contribute significantly to 
I(K) when the contrast tends to infinity. The same par- 
ameter was calculated from the coordinates of the struc- 
tural lysozyme model for the scattering function 0c(r). 
Unit scattering lengths were assumed for all atoms 
except the exchangeable H atoms for which b = 0 was 
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assumed. According to the estimation of static acces- 
sibility of solvent molecules to lysozyme by Lee & 
Richards (1971) the penetration of the internal region 
by water molecules could be neglected. The numerical 
value of Re= 13.85 A was obtained which compares 
remarkably well with the experimental value. 

In an HzO/D20 mixture containing 8% D20 the 
coherent scattering density of the solvent vanishes. The 
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Fig. 1. The square root  of  zero-angle scattering is a linear 
funct ion of the volume fraction of  D=O of  the solvent. The 
scale of the ordinate  is given in fermi ( =  10 -13 cm). 
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Fig. 2. The square of  the radius of  gyration R as a funct ion 
of  the reciprocal of the contrast  ~. The dots with error bars 
represent experimental  results. 

scattering pattern of lysozyme as in vacuo is observed, 
if layers of ordered water molecules surrounding the 
lysozyme molecule are neglected. The radius of gyra- 
tion of the scattering density of lysozyme in this partic- 
ular solvent is R =  14.2 A. The value calculated from 
the atomic coordinates of tetragonal lysozyme (Phillips, 
1972) from the actual values of the scattering lengths is 
14"05 A. 

The slope of the tangent (dashed line in Fig. 2) 
indicates c~ = 3.5 × 10 -s a value which is found in other 
solutions of globular proteins (Stuhrmann, 1974) and 
seems to reflect a common feature of many proteins. 
An outer region of higher scattering density due to 
polar groups surrounding a hydrophobic core that is 
somewhat richer in protons would explain the positive 
sign of ~. From the curvature of the bent line in Fig. 2, 
fl is found to be 4 x 10 -12 A -2. As fl is proportional to 

m~llfelm(r)radrl2=_ ~ [see equation (9)], theasymmetry 

of the lysozyme molecule is obvious. The equivalent 
statement would be that the centre of e(r) changes with 
variable contrast. For 3 =  1 x 10 l° cm -2 the displace- 
ment amounts to about 2 A. 

3. The basic scatter&g functions 
From all the scattering curves that of lysozyme in 

vacuo (vanishing scattering density of the solvent for a 
8 % content of D20 in H20) is most easily compared 
with a scattering function calculated from the lysozyme 
structure coordinates 

I ( x ) = ~  ~ bib y sin Klri-rjI 
, j KIr~-rjl (5) 

The structural coordinates of all non-hydrogen atoms 
have been determined by X-ray diffraction (Phillips, 
1972). The positions of the H atoms were generated 
from the coordinates of the heavy atoms by means of 
a PL1 program which had already been tested with 
other protein structure data (Stuhrmann, 1973). For 
~¢>0.5 A the calculated scattering curve I(x) agrees 
with the experimental results (Fig. 3). The analysis of 
small-angle scattering in terms of multipoles can be 
very fruitful, especially if we are interested in the origin 
of certain details of the scattering curve. Furthermore 
it leads to a clearer understanding of the basic scat- 
tering functions. The mathematical background which 
has already been reported (Harrison, 1969; Stuhrmann 
1970a) will be briefly outlined. 

The scattering density function Q(r) is expanded in a 
series of spherical harmonics Yzm(O)), 09 being a unit 
vector with components 0 and ~0, the polar angles; 

oo l 
Q ( r ) = ~  ~ Q~m(r)Yzm(Og)- (6) 

l=0 m=--I 

Due to the completeness of the spherical harmonics 
any arbitrary Q(r) can be described by an appropriate 
choice of the radial function Q,,(r). From the orthog- 
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onality of the spherical harmonics Yt,,(co)it follows 
that 

&=(r)= l ~o(r) g/'.,(og)do9. (7) ,) 

The scattering function of dissolved particles is in this 
formalism given by 

with 

co 1 

x(K)=2zc ~ ~ ~ IA,.,(~:)I ~ (8) 
1 = 0  m = - - I  

f Aim(to) = i t Otm(r)jzOcr)rZdr , 
0 

whereA(xr) are the spherical Bessel functions of order l. 
A, , (x )  is a multipole component of the geometrical 

structure factor of 0(r). The scattering intensity I(x) 
was calculated for l=0 ,  2, 4, 6 and 10 as the highest 
values of the multipole expansion. These curves are 
shown in Fig. 3 with the experimental curve. The ter- 
mination index l=  oo is defined by (5). The conserva- 
tion of I(x) on rotation of 0(r) is expressed by the fact 
that it has the form of a scalar product in the space of 
spherical harmonics 

I=<XlX>.  (9) 

The relations between the basic scattering functions are 
clarified by combining (9) and (1) 

S= <-~Ac + A,I~Ac + A,>=-d2(A<IA<> + ~((A¢IAs> 

+(A~IA~>)+<A~IAs>. (10) 

At a given K the small-angle scattering data of lysozyme 
in different H20/D20 mixtures are approximated by 
(2). 

The resulting basic scattering functions are shown in 
Figs. 4-6. I~(x) is represented in the form of its square 
root. The experimental results agree with scattering 
curves calculated from the crystal structure. The decrease 
of accuracy of the experimental data with lower inten- 
sity obscures the details especially of Is(x). 

Equation (7) offers an infinite number of possible 
superpositions of the multipole components without 
changing I(x) (Stuhrmann, 1970b). The question 
whether a unique solution out of this infinite number 
can be found is treated in the next section. 

3.1 The spherically averaged structure 
How could we find the structure 0(r) of the lysozyme 

molecule if we had only neutron small-angle scattering 
data? A useful approach to find a unique solution and 
hence the structure consists in searching for the spheric- 
ally averaged structure (o(r)),,v=Ooo(r)/V~ which is 
possible if the particle exhibits almost spherical sym- 
metry (Mateu et al., 1972). In general, spherical sym- 
metry cannot be assumed to be the dominant feature 
of Q(r) and therefore the strategy has to be slightly 

modified. A glance at the multipole contributions of the 
basic scattering functions reveals an interesting fact: 
The cross-term Ics(x) is dominated by l = 0  (i.e. 
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Fig. 3. Neutron scattering of lysozyme in vacuo (solvent: 

D20/HzO= ~-~z). • experimental result, - -  calculated from 
the mode] [equation (5)], " .-  calculated from the mode] 
[equation (8), with various termination indices]. The scale 
of the ordinate is given in barn, (10 -24 cruZ). 
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Fig. 4. The square root of It(x), with the multipole analysis 

of lc(x,) as calculated from the model (I) from experimen- 
tal neutron scattering curves of lysozyme in various 
HzO/D20 mixtures. The termination indices are given in the 
figure. The sequence of signs of the spherically averaged 
amplitude (l=0) is alternating. The ordinate is the same as 
in Fig. 1. ~= 10 -*° cm. 
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spherical symmetry) up to considerably higher ic than 
I~(K) (see Fig. 5). This is not surprising because the 
absolute squares of the multipoles are always positive 
whereas the mixed terms of I~(K) can have negative 
and positive contributions which cancel each other 
more and more with increasing l; i.e. the detailed 
features of Qc(r) and Q~(r) are practically uncorrelated 
[see equation (11)]. For values of K which are not too 
large the basic scattering functions are 

-1000 

-2000 

- 3 0 0 0  

i i I ! ! 

4[ ~, . . . .  

~', ,/ 

012 ' 014 ' 0[6 

K[A-'] 
Fig. 5. The mixed scattering funct ion I~,(t¢) of  lysozyme. • ex- 

per imental  results, - - -  calculated f rom the model  with equa-  
tion (8), te rminat ion  index 1=0, - -  calculated f rom the 
model with equation (8), termination index l>4. Ordinate 
as in Fig. 1. 
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Fig. 6. N e u t r o n  scattering of  lysozyme at vanishing contrast .  

• exper imental  results. The  full lines represent  scattering 
curves, which are calculated f rom the model  with equat ion  
(8). The te rminat ion  indices are shown in the figure. Or- 
dinate  as in Fig. 3. 

I 2 

I¢(K)/2rcZ=[A~o(K)] z+ ~ IA~m(K)I z+ ~ IA~(K)I z 
m=--I m=--2 

Ics(~C)/4;'r z = Ag0(K). Ag0(x) (11) 
1 

Is(tr)/2rcZ=[Ago(K)] 2 + ~ [A~m0c)[ 2+ . . . .  
m=--I 

The dipole contribution ( l= 1) in Ic(K) might be rather 
small because the centre Q~(r) is at the origin. Its power 
series in K 2 starts only with ~:4, as does the quadrupole 
term (/= 2). The latter describes the anisotropy of the 
molecular dimensions and is more important even if 
the molecular structure exhibits considerable asym- 
metry, which is due to odd l. The presence of the dipole 
term in Is(t0 on the other hand has already been shown 
during the analysis of the radius of gyration, flz is the 
first coefficient of its power series which starts with K z. 

The spherically averaged amplitudes were estimated 
in the following manner" at small K Ago(It) is practically 
equal to V'I~(tc) and it is positive as Qc(r) is always 
positive. As IcsOC) is negative Ago(X) must equally be 
negative in this tc region in agreement with the positive 
value of c~. At K=0.29 A - t  the function Its(K) passes 
through zero (see Fig. 5). Either Ag0(x) or AgoOc) are 
changing sign. Inspection of Fig. 4 leaves no doubt that 
Ag0(x) is vanishing at this particular value of to. 

In order to calculate numerically any radial function 
it is approximated by an analytical expression. These 
calculations are then compared with those based on 
the lysozyme X-ray structure. For this purpose the 
Laguerre polynomials L~(x z) are very convenient be- 
cause the Hankel transformation is simply achieved 
by changing the sign of the polynominals with odd n: 

V-~ foeXp ( -  xZ/2) Lt,+ I/Z(xZ)lJt(xy)xZdx 

= ( -  1)"y' exp (-yZ/2) L~+~/Z(y2). (12) 

Two conditions define A¢(x)av: Ac(0)= 1450 (see Fig. 4) 
and Ac(x),,, = 0 at K = 0.29 A -  1 (Fig. 7). Two coefficients 
of the series are determined 

f (x)  = coLao/2(x 2) + el L~/Z(x 2) = eo exp ( - x2/2) 

+ c1(-} + x z) exp ( -  x2/2) . (13) 

The quality of this approximation is strongly in- 
fluenced by the transformation of the abscissa. At small 
x the Guinier approximation holds: 

I / ~  = A c(K) = ff Vc(1 ± o2,.-z. -o- -c  . . . . .  ) .  (14) 

With the transformation factor (R/1/6)/(1 / 1/'2) = R~ 1/3 = 
8 the following numerical values were obtained (Figs. 
7, 8)" 

Ago(X) = 1030 + 280( 3 -  x 2) exp ( -  x2/2) 
Cg0(x) = 1030 - 280(3z - - x z) exp ( -  x/2).  (15) 
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The spherically averaged internal structure ( ~ ( r ) )  was 
calculated in a similar way (Figs. 7, 8): 

A~o(X) = - 300 + 200( 3 -  x z) exp ( -  x2/2) 
= - 300x 2 exp ( -  x2/2) 

Qgo(X) = - 3 0 0 -  200( 3 - x z) exp ( -  x2/2).  (16) 

Here it was taken into account that  As(0)=0 and at 
small K the relation (As(x))=Ics(x)/2(Ac(x)) holds. A 
remarkably  good approximat ion of the radial scattering 
density of  the lysozyme model has been achieved for 
both  the internal structure and the overall dimensions. 

The approximations which are described above give 
better agreement with the experimental curves than 
does a simple Gaussian fit (Figs. 7, 8). 

As we did not  make any absolute measurements we 
should explain how an absolute scaling of  Fig. 8 has 
been achieved. For  the scale of  the ordinate the in- 
fluence of H /D exchange has to be considered. The 
mean value of Co(r) is 0.8. On the basis of a decreased 
density of  polar  groups in the central part  (Lee & 
Richards, 1971) Qc(0)=0.9 has been assumed. 

3.2 Higher multipole components 
From the rather  slow decrease of (Q J r ) )  between 

r =  10 and 23 A (Fig. 8) it is concluded that  this region 
is partially accessible to the solvent whereas the core 
appears to be relatively homogeneous at a resolution 
of  15 A. The possibility that  the outer region is made 
up of loosely padded segments of  the protein chain, 
which would result in a spherical structure, can be 
excluded, because the rather considerable difference 
between the square root  of I(x) and A~(x) at x < 0 . 2  
(Fig. 7) betrays the presence of  multipole components  
with low index l. 

The difference between Ic0c) and I(A/x))l 2 seems to  
start  with ~:2 (broken line in Fig. 9). A dipole structure 
Ql (x)=x  exp ( - 0 . 5 .  x 2) cos 0 would give rise to a 
scattering pat tern Ii(x) = x 2 exp ( -  x2). After sub- 
tracting an appropriate  amount  of  I~(x) (dotted line 
in Fig.  9) f rom the first difference, we are left with a 
residue which starts with K 4. This second difference can 
be interpreted in terms of  a quadrupole structure Q2(r) 

2 

Q2(r)= Z Q2m(r)Y2m(O'q~)" (17) 
m =  - - 2  

The choice of the sign and the index of the coefficients 
is arbitrary,  because the sum of the absolute squares of  
A2m (x) enters into the interpretation. Prolate or oblate 
partial  structures would result, depending on whether 
the positive or negative sign is preferred. The spatial 
orientat ion of  the main axes of the quadrupole  is 
governed by the weight of the Q2m(r). Fig. 9 shows the 
superposit ion of Q0(r) + Q~(r) and ~0(r) + Q2(r). Both 
partial  structures have rotat ional  symmetry  [which is 
already an arbi t rary restriction for o2(r)]. Any super- 
posit ion of the independently rotated structures Q0(r), 
Q~(r), and Q(r) is a possible structure which fits the 
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Fig. 7. The averaged amplitudes (A(tc)) of the overall dimen- 
sion (At(x)). • graphical estimation, taking into account 
good approximation of I(x) in the Guinier zone and the 
zero at tc=0.29 /~-1. calculated from the lysozyme 
model . . . ,  approximation by a Gaussian curve [= L0V2(x2)]. 
--- approximation by L01/2(x 2) and Ll/2(x2). The averaged 
amplitude of the internal structure A~(x) (lower part): 
• Ic~(tc)/2 (At(x))= (A~(tc)). --- approximation by Loll2(x 2) 
and Ll/2(x2). The ordinate is the same as in Fig. 1. All 
Laguerre polynomials L are weighted by exp ( -  x2]2). O root 
of It(x). 
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Fig. 8. The radial scattering density distributions of the overall 
structure ~Qc(r) (upper part of the figure) and the internal 
structure Q~(r) (lower part of the figure), calculated 
from the model, . .-  approximation by a Gaussian [only 
for 0c(r)]. --- approximation by Lol/l(x 2) and Ll/2(x2). The 
units of the ordinate are 101° cm -z 
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scattering curve lc(x) equally well (Stuhrmann, 1970b). 
Structures resembling a pear may result as well as 
shapes like beans depending on the mutual orientation 
of ez(r) and Q2(r). From crystallographic studies (Blake 
et aL, 1965) it is known that the shape of the lysozyme 
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F ig .  9. The scattering curve It(x) analysed in terms of partial 
scattering functions (. . .) ,  which originate from various 
multipole components of Qc(r). - -  Ic(x). The differences 
resulting from the subtraction of a partial scattering func- 
tion are shown by broken lines (---). 
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Fig. 10. The partial structures of the lysozyme molecule. The 
contour lines represent half the maximum value of Qc(r). 
. . .  Q0(r) (a) - o0(r)+ 0z(r). (b) - Q0fr)+ Q2(r). (c) - -  Q0(r) + 
Ql(r) + 02(r). a cross section of the lysozyme model 
showing the cleft with its active site (Phillips, 1972). 

molecule is concave. A bean-like structure (the quadru- 
pole term in Fig. 10 is turned by n/2) fits the known 
lysozyme model fairly well. The cleft of the lysozyme 
molecule with its active site is not clearly resolved by 
this method (Fig. 10). If small-angle scattering func- 
tions are treated according to this general method a 
unique solution for the structure cannot be given but 
the whole family of possible structures can be derived 
from the scattering curve. The only restriction that 
Oc(r) is always positive is useful to eliminate a part of 
the solutions. This restriction is in the case of lysozyme 
not sufficient to obtain a unique solution. If 0c(r) is 
constant everywhere inside the lysozyme molecule, the 
correlation between the multipoles would be much 
stronger and a unique structure determination seems 
to be possible at least at low resolution (Stuhrmann, 
1970a). This, however, would only be the case for 
solvents having no interaction with lysozyme. The 
experimental scattering curve ec(r) of lysozyme in 
H20/D20 mixtures does not fulfil this condition, but 
it is close to one in hydrophobic regions and rather 
low in regions of the molecule with polar groups and 
dissociating protons. A structure determination from 
lc(x) is therefore prohibitively difficult. Higher multi- 
pole components of the internal structure cannot be 
calculated because the experimental I,(~c) are too inac- 
curate (Fig. 6). 

Conclusions 

Although we restricted the interpretation of the experi- 
mental results to rather low momentum transfer x, 
some features of the lysozyme molecule, which seem 
to be typical for globular proteins, have been revealed 
by the contrast variation method. Neutron scattering 
proves to be especially suitable for the application of 
the solvent exchange technique. Owing to the higher 
quality of data new limits of structure determination by 
small-angle scattering could be defined. 
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The probabilistic approach used by the author in a preceding paper [Acta Cryst. A31, 252-259] for 
deriving the sign of quartet relations is used to obtain formulae which take terms of order 1/N 2 into 
account. Experimental tests show that the overall reliability of the quartets is better estimated by these 
formulae, but does not reach the reliability of the triplets. Probabilistic formulae are then rescaled by 
suitable empirical factors. The new expressions lead to an improvement compared both with theoretical 
formulae and with the empirical [Schenk (1975). Acta Cryst. A31, 259-263] method: what is more 
significant, the new quartets are almost always found to be more reliable than triplets. 

Introduction 

Recently several papers have been devoted to the 
estimate of the cosine invariant 

COS ( ~ h  "~- (/)k -~- (/91 - -  ~0h + k + l) • 

Schenk (1973a) compared the reliability of the relation 

~ h  -t- ~ k  -JF @1 - -  (19h + k  + 1 : 0 

as a function of 

E4= N-11EhEkE~Eh + k + ll 

x { l+  Eh+k+Eh+'+Ek+ ' }  
Eooo - ,  (1) 

with that of the ~2 relationship as a function of 

E3= IEhEkEII/VN . 

From a probabilistic point of view Hauptman (1974a) 
derived a negative cosine invariant expression, subject 
to the condition IEh+k[ ~--IEh+ll ~ IEk+ll ~_0: 

It(B) 
cos ((Oh + ~Ok + (,0,-- ~h+k+ , )  = Io(B) ' 

where B=2lEhEkEiEh+k+l[/N and 11 and l0 are the 
modified Bessel functions of order one and zero. 

Schenk & de Jong (1973) and Schenk (1973b, 1974) 
proved from semi-empirical observations that negative 
quartets and quartets of the special type (h = k) are very 
useful in finding the correct solution from a set of ~z 
solutions in symmorphic space groups. A probabilistic 
theory of these special quartets in P1 and P ]  was 
given by Giacovazzo (1974a, b). 

Hauptman (1974b) gave in P 1 a probabilistic theory 
of the general cosine invariant cos (0h+0k+(191-- 
CPh+k+l) subject to no restrictive conditions. This 
theory leads to an estimate for the value of the cosine 
which may lie anywhere between - 1  and + 1. 

Independently and by a different mathematical 
approach Giacovazzo (1975a) derived in P ]  probabilis- 
tic expressions for quartets which can in principle re- 
place former formulations. The reliability of the chief 
formulae derived in this paper was explored by Schenk 
(1975) who proved that the new expressions: 

(a) lead to an improvement compared with the 
empirical estimate of the reliability of the negative 
quartets (Schenk, 1974) 

(b) over-estimate the probability of the strongly 
defined positive quartets. 

The aim of this paper is to improve the theoretical 
results previously described (Giacovazzo, 1975a, re- 
ferred to as paper l) from two points of view: 


